Symbol |
26 13Al eller 26 Al |
---|---|
Nøytroner | 1. 3 |
Protoner | 1. 3 |
Naturlig tilstedeværelse | Spor ( kosmogen isotop ) |
---|---|
Halvt liv | 7,17 × 10 5 år (0,717 Ma ) |
Atommasse | 25.986892 u |
Snurre rundt | 5+ |
Overflødig energi | −12.210 309 MeV |
Bindende energi | 2.827 266 MeV |
Oppløsning | Produkt | Energi ( MeV ) |
---|---|---|
β + | 26 12Mg |
4.00414 |
ε | 26 12Mg |
Den aluminium 26 , symbol26
13Al, eller bare 26 Al, er en radioaktiv isotop av aluminium med en halveringstid på 7,17 × 10 5 år (0,717 Ma ).
Aluminium 26 er til stede i universet fordi det er et produkt av supernovaer . I solsystemet har den opprinnelige aluminium 26 forsvunnet, men på jorden blir det stadig små mengder under dannelse av kosmiske stråler .
Aluminium-26 var tilstede under dannelsen av solsystemet , og forfallet ga de første planetariske kroppene tilstrekkelig varme til å smelte dem ( delvis eller helt) og derfor skille seg ut . Denne opprinnelige aluminium 26 har etterlatt seg spor i form av anomalier i den isotopiske sammensetningen av magnesium , som brukes til å datere visse tidlige hendelser i solsystemets historie .
I 1953 var det kjent seks isotoper av aluminium , med massetall 24 til 29, hvorav bare 27 Al var stabile (naturlig aluminium er monoisotopisk ). De andre fem, produsert i laboratoriet ved kjernereaksjoner , alle hadde halveringstider i rekkefølge av et minutt eller en annen , for liten til å gi biologer og leger med en aluminium tracer . Blant dem var det virkelig en isotop med masse nummer 26, men med en halveringstid på 6,3 s . Ulike eksperimentelle og teoretiske betraktninger indikerte imidlertid at det med en spinn på 0+ må være en isomer (bemerket 26m Al) og at grunntilstanden 26g Al, av spinn 5+, må være mindre ustabil (med en halveringstid mellom 10 4 og 10 6 år). 26g Al produseres faktisk i 1954 ved å bombardere magnesium 26 og magnesium 25 med deuteroner , og halveringstiden er bestemt til å være i størrelsesorden 10 6 år. Denne halveringstiden vil bli målt mer presist i 1958 (0,738 ± 0,029 Ma ).
Den kosmiske strålingen som produserer samme type bombardement av ladede partikler som eksperimenter har avdekket 26g Al i 1954, undersøker vi året etter tilstedeværelsen av aluminium 26 (og andre kosmogene isotoper ) og under overflatene som er naturlig utsatt for kosmiske stråler, spesielt de av terrestriske knauser , tektites og meteoritter , med suksess i flere tektites og meteoritter. Metoden vil bli utviklet senere, og 26 Al- konsentrasjonen av overflatene vil gjøre det mulig å måle varigheten av eksponeringen. I 1967 ble aluminium 26 påvist i is på Grønland ; den kommer fra virkningen av kosmisk stråling på atmosfærisk argon .
Harold Urey viser i 1955 at langlivede naturlige radioaktive kjerner ( 40 K , 238 U , 235 U og 232 Th ) er utilstrekkelige varmekilder til å forklare sammensmeltingen av små planetariske kropper i begynnelsen av solsystemet; deretter foreslår han at de nødvendige varmekildene er kortvarige kjerner syntetisert i andre stjerner enn solen, og identifiserer 26 Al som den mest sannsynlige kandidaten.
Det første beviset på tilstedeværelsen av aluminium 26 under dannelsen av solsystemet er levert av Allende , en meteoritt som falt i 1969 i Mexico . Denne meteoritten inneholder ildfaste enklaver som er rike på aluminium og relativt fattige på magnesium , regnet som de første kondensatene som skyldes kjøling av soltåken . I disse enklaver, den 26 Mg / 24 Mg -forhold - konstant i alle materialene som er kjent inntil da, både på land og i utenomjordiske - varierer, og lineært avhengig av Al / Ca kjemisk-forhold . Den eneste holdbare forklaringen er at aluminiumet i tåken fremdeles inneholdt aluminium 26 under dannelsen av enklaver, og at dette aluminiumet 26 siden har oppløst seg til magnesium 26. Hellingen på linjen 26 Mg / 24 Mg vs Al / Mg gir molfraksjon på 26 Al i denne innledende aluminiumen: 5 × 10 −5 . Lignende variasjoner av 26 Mg / 24 Mg- forholdet vil da bli målt i andre objekter - spesielt kondruller -, men med generelt mindre 26 Al- fraksjoner , er et tegn på at deres dannelse var senere, for eksempel noen få millioner d år: aluminium 26 tillater en fin datering av dannelsen av de første objektene i solsystemet.
Den nåværende tilstedeværelsen av aluminium 26 i det interstellare mediet ble demonstrert i 1984 ved observasjon av HEAO-3- romteleskopet av y-stråler av energi 1.809 MeV , karakteristisk for det radioaktive forfallet av Al 26. Ti år senere ble et annet romteleskop, den CGRO kan finne et stort antall av aluminium kilder 26 i Galaxy , identifisert som supernovaer eller Wolf-Rayet stjerner .
I 1993 ble korn av nanometrisk til mikrometrisk størrelse , hovedsakelig bestående av diamant , grafitt og silisiumkarbid , oppdaget i visse primitive meteoritter og tolket som korn av det interstellare mediet før dannelsen av solsystemet (noen ganger mer enn en milliard år. ). Grafittkuler inneholder magnesium 26 fra forfallet av aluminium 26, med et høyt initial 26 Al / 27 Al-forhold, opp til nesten 0,2. De ser ut til å komme fra minst tre typer kilder, sannsynligvis giganter av den asymptotiske grenen , novaer og Wolf-Rayet-stjerner .
Uten ytterligere presisjon betegner 26 Al grunntilstanden for spinn 5+, mer presist bemerket 26 g Al. Den forfaller til 26 Mg med en halveringstid på 7,17 × 10 5 år i henhold til to mekanismer, hovedsakelig (85%) l utslipp av en positron ( β + radioaktivitet ), men også (15%) fangst av et elektron fra den elektroniske prosesjonen ( ε radioaktivitet ).
Forfallet til magnesium 26 er ikke direkte, det skjer gjennom den ene eller den andre av to 26 Mg spin 2+ isomerer , begge veldig ustabile og fører til spinn 0+ grunntilstand ved γ radioaktivitet. , Den første (97,3%, via β + eller ε) med en halveringstid på 0,49 ps , den andre (2,7%, β + ) med 0,08 ps .
Aluminium 26 har også en 0+ spinnisomer, betegnet 26m Al. Den er mye mer ustabil enn grunntilstanden og forfaller av β + radioaktivitet til 26 Mg (i grunntilstand, direkte), med en halveringstid på ca. 6,36 s . Oppløsningen av 26m Al er en overgang Fermi (in) , hvor spinnene til elektronet og neutrinoen som sendes ut er antiparallelle. Halveringstiden har en viss betydning for å eksperimentere med å teste to komponenter i standardmodellen , bevaring av vektorstrømmen (en) og enhetligheten til CKM-matrisen . I 2011 ble denne halveringstiden målt til 6,346 54 ± 0,000 60 s (total usikkerhet) eller ± 0,000 46 (intern usikkerhet).
Aluminium 26 kan oppdages, og størrelsen målt, via positroner og spesielt γ-stråler (spesielt de med en energi på 1,809 MeV ) som følge av dets radioaktive forfall . I laboratoriet kan 26 Al- konsentrasjonen av en prøve måles, med god presisjon og høy følsomhet (i praksis for 26 Al / 27 Al-forhold så lave som 10 −13 eller til og med 10 − 14 ), ved massespektrometri pr. gasspedalen (i) .
Aluminium 26 er til stede i det interstellare mediet, og i sekulær likevekt mellom injeksjon (spesielt av supernovaer ) og oppløsning. Mengden aluminium 26 som fornyes hvert år er estimert til tre solmasser .
De samme kjernefysiske reaksjonene som produserer aluminium-26 i laboratoriet forekommer på overflaten av planetariske kropper, under påvirkning av kosmiske stråler . Generelt er disse overflatene ikke eksponert lenge nok til å oppnå en sekulær likevekt (mellom produksjon og oppløsning): jo lenger overflaten har blitt eksponert, jo rikere er den i 26 Al.
De kosmiske strålene reagerer med forskjellige luftkomponenter og produserer forskjellige kjente isotoper Cosmogenic , inkludert 14 C , 3 H , 10 Be og 26 Al. Konsentrasjonen av disse isotoper i luften er nesten konstant, ved sekulær likevekt mellom produksjon og forsvinning ( ved radioaktivt forfall og tap av nedbør ). Konsentrasjonen av aluminium 26 i troposfæren er altså i størrelsesorden 100 atomer per m 3 .
Den is av bre og inlandsis feller små luftbobler hvis sammensetning i Kosmogeniske isotoper er i utgangspunktet den for luft. Deretter reduseres konsentrasjonen av hver av disse isotoper ved radioaktivt forfall, mer eller mindre raskt, avhengig av halveringstiden . Spesielt 26 Al / 10 Be- forholdet har en startverdi på (1,89 ± 0,05) × 10 −3 og avtar over tid (fordi halveringstiden til aluminium 26, 0,717 Ma , er lavere enn den for beryllium 10 , 1,386 Ma ): målingen gjør det mulig å datere isen. For eksempel ga en isprøve ekstrahert på Grønland på en dybde på 2760 m en gravalder på (6,7 ± 2,6) × 10 5 år.
Aluminium 26 produseres ved reaksjoner 25 Mg ( d , n ) 26 Al, 26 Mg (d, 2n) 26 Al, 26 Mg ( p , n) 26 Al, 28 Si (d, α ) 26 Al, 27 al (n , 2n) 26 al, 27 al (p, pn) 26 al og 27 al (p, 2n) 26 Si (β + ) 26 al, samt ved spallering av tyngre grunnstoffer av protoner med høy energi.