Kva-kategori

I matematikk , nærmere bestemt i kategoriteori , er en kvasi-kategori en generalisering av begrepet kategori. Studiet av slike generaliseringer er kjent under navnet teori om høyere klasser  (i) .

Kvasi-kategorier ble introdusert av Boardman  (de) og Vogt i 1973. André Joyal avanserte studien av kvasi-kategorier sterkt ved å vise at det er en analog for kvasi-kategorier av mest grunnleggende forestillinger. Kategoriteori og til og med noen forestillinger og teoremer ved et mer avansert nivå. Jacob Lurie skrev en detaljert avhandling om denne teorien i 2009.

Kvasi-kategorier er enkle sett av en bestemt type. Som vanlige kategorier inneholder de objekter, 0-enkelhetene til det enkle settet, og morfismer mellom disse objektene, 1-enkelhetene. Men i motsetning til standardkategorier er sammensetningen av to morfismer ikke entydig definert. Alle morfismene som kan tjene som en sammensetning mellom to gitte morfismer er koblet sammen av inversible morfismer av høyere orden (2-simplekser betraktet som "homotopies"). Disse morfismene av høyere orden kan også være sammensatte, men igjen er sammensetningen bare godt definert til nær enda høyere orden inverterbare morfmer, etc.

Tanken bak teorien om høyere kategorier (i det minste når høyere morfismer er inverterbare) er å gi, i motsetning til hva som gjøres i standardkategoriteori, settet med morfismer mellom to objekter med en topologisk romstruktur . Dette antyder at en høyere kategori bare skal være en topologisk beriket kategori . Modellen av kvasi-kategorier er imidlertid best egnet for applikasjoner som beriket kategorier topologisk, selv om Lurie har bevist at begge har naturlige mønstre Quillen-ekvivalent  (in) .

Definisjon

Per definisjon er en kvasi-kategori C er et simplekskompleks sett tilfredsstiller de innvendige forhold med hensyn Kan noen "horn C  " (simplekskompleks applikasjons i C med ) har en forlengelse i C . (Se Kan's Fibration (en) for en definisjon av enkle sett og .)  

Tanken er at 2-simpleksene skal representere kommutative trekanter (i det minste opp til homotopi). En applikasjon representerer et komponerbart par. I en kvasi-kategori kan man altså ikke definere en lov om komposisjon på morfismene, siden det er forskjellige måter å komponere kartene på.

Det følger av denne definisjonen som er en triviell Kan-fibrering. Med andre ord, selv om komposisjonsloven ikke er unikt definert, er den unik bortsett fra et kontraktilt valg.

I nesten hver kategori C , kan man knytte en vanlig klasse hc , kalt homotopi kategori  (i) fra C . Formålene med fore homotopiteori kategorien er toppene C . Morfismene er gitt av homotopiklasser av kanter mellom hjørner. Sammensetningen er gitt ved bruk av "hornfyll" for n = 2.

For et generelt forenklet sett eksisterer det en funktor fra sSet i Cat (en) , kalt grunnleggende funksjon, og for en kvasi-kategori C er den grunnleggende kategorien og den homotopiske kategorien identisk; det vil si .  

Eksempler

Merknader og referanser

(fr) Denne artikkelen er delvis eller helt hentet fra Wikipedia-artikkelen på engelsk med tittelen Quasi-category  " ( se forfatterlisten ) .
  1. (en) JM Boardman og RM Vogt, Homotopy Invariant Algebraic Structures on Topological Spaces , Springer-Verlag , al.  "Forelesningsnotater i matematikk" ( nr .  347),1973( DOI  10.1007 / BFb0068547 , matematiske anmeldelser  0420609 ).
  2. (i) Jacob Lurie , Higher Topos Theory , Princeton University Press , koll.  "Annaler for matematikkstudier" ( nr .  170)2009, 925  s. ( ISBN  978-0-691-14049-0 , Matematiske anmeldelser  2522659 , arXiv  matematikk.CT / 0608040 , les online ).

Se også

Bibliografi

Eksterne linker

<img src="https://fr.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">